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Determinants of n× n Matrices (optional)   By Arkady Etkin 
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where each of the determinants in the sum above is either 1 or –1. 

For example, =
















i

j

k

det 332 )1(det)1(det)1(det)1( −=
















−=
















−=
















−

k

j

i

j

k

i

j

i

k

 

 

Observe that each scalar product in front of the determinants in (1) has the form γβα 321 aaa where 

),,( γβα is a rearrangement or permutation of (1,2,3). Indeed, if we replace the unit directional 

vectors kji ,, with their generalized names 321 ,, eee  in (1), then we may notice that every term in 

the sum is of the form 
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Since the summands in (2) follow a clear pattern, our immediate goal is to represent (2) in a 

more compact form. To achieve this goal, note that the rearrangements of (1,2,3) may be viewed 

as one-to-one and onto functions on the set {1,2,3}. For example, the permutation (2,3,1) may be 

represented by the function σ:{1,2,3}�{1,2,3}, where σ(1)=2, σ(2)=3, and σ(3)=1. 

With this notation, 
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The permutation ι, known as the identity permutation, is the trivial rearrangement of (1,2,3). In 

other words, ι(1)=1, ι(2)=2, and ι(3)=3.  

Since every summand is obtained by choosing one and only one term in each row and each 

column of the determinant matrix, we see that  
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Here, the sum is taken over all permutations of (1,2,3). The set of all such permutations is 

denoted by 3S . 

 

In order to make equation (3) the definition of the 3 by 3 determinant, it is necessary to eliminate 

all reference to determinants on its right side. To do this, recall that each 
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 will be 1 or 

–1. It will be 1 if the number of pairwise row interchanges is even and it will be –1 if this number 

is odd. For any σ in 3S , let N(σ) denote the minimal number of transpositions, or pairwise 

interchanges of components in the vector (σ(1), σ(2), σ(3)) that are necessary to make it into 

(1,2,3). For example, if (σ(1), σ(2), σ(3)) = (3,2,1), then N(σ) = N(3,2,1) = 1+N(1,2,3) = 1+0 = 1. 
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moment to realize that for a generic σ, 
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We may now restate the definition of a 3 by 3 determinant in our new language. 

 

Definition: Given a 3 by 3 matrix A with entries )( ija , we define det(A) by 
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Note that in the definition above, we are chiefly concerned with the parity of N(σ) (i.e. whether 

N(σ) is even or not). Its exact value is of no interest to us. For instance, I could have brazenly 

(and incorrectly) stated that N(3,2,1) = 1 + N(2,3,1) = 2 + N(2,1,3) = 3+N(1,2,3) = 3, because 
31 )1()1( −=− . In fact, if I can find a sequence of transpositions in the vector (σ(1), σ(2), σ(3)) 

that converts it into (1,2,3), then I immediately know that )()1( σN− is equal to negative one raised 

to the order, or the number of transpositions of this sequence. This is so, because, given any two 

such sequences of transpositions of order s and t respectively, we see that the sequence of s 
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ts

e

e

e

)1(det)1(

)3(

)2(

)1(

−=
















=−

σ

σ

σ

. Thus, the number 

of transpositions needed to rearrange the unit normal vectors inside the determinant to their 

proper order is unique up to parity. That is, we can perform this rearrangement in few or in many 

steps, but if the number of steps taken by one procedure is odd, then the number of steps in all 

other procedures is odd. Conversely, if the number of steps is even, then the number of steps in 

all other procedures is also even. 

 

Comprehension check: What is the parity of N(3,1,2)? In other words, is N(3,1,2) even or odd? 

What is the value of 
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The idea of volume may be generalized to higher dimensions. The determinant
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example, may be thought as the volume of a 4-D box with dimensions 1 by 1 by 1 by 1 (What 

would you say is its volume?). By essentially following the same patterns of reasoning that lead 

to the definition of 22× and 33× determinants, you will conclude that the n-D volume of a 

‘parallelepiped’ spanned by vectors a1 ,…, a n
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 The fact that we are able to give a definite formula for this function using properties (i)-(iii) shows that this 

function is unique. 
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Properties (i)-(iii) imply that, just like in the 33× case, the nn × determinant is the sum of all n-

product scalars (exactly one from each row and each column) multiplied by determinants of the 

corresponding permutations of unit directional vectors e1 ,…,e n . That 

is,
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This leads us to the following definition. 

 

Definition: Let A be an nn ×  matrix ( ija ), then =)det(A ∑
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where the sum is taken over all permutations of (1,2,…,n). 

 

For those of you who know a bit of combinatorial analysis, there is a total of n! permutations of 

the numbers (1,2,…,n). Thus, there are 6=3! permutations of the vector (1,2,3) and therefore 6 

summands in the definition of 33× determinant. 

 

The above definition is computationally cumbersome, but it has significant theoretical 

consequences. Before we can begin to explore a few of these consequences, we’ll need to 

develop quite a bit of theory. 
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Observe that for σ nS∈ , there must be a permutation µ nS∈ that brings (σ(1),…, σ(n)) back to its 

natural order (1,…,n). In algebraic notation, this means that µ σ = σ µ = ι, where ι is the identity 

permutation (i.e. the permutation that does not shuffle (1,…,n).We refer to this µ by its special 

name 1−σ because µ is the unique inverse function of σ.
b
 

 

Remark: In the discussion above, we regarded µ as the inverse of σ. However it is more correct 

to say that σ and µ are inverses of one another. We are free to say that σ is the inverse of µ and 

refer to σ by the name of 1−µ . 
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Since any permutation of (1,…,n) can be uniquely identified as the inverse of another 

permutation, we can restate the definition of the nn × determinant in the following form. 
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This form will prove useful in relating the determinant of an nn × matrix A to the determinant of 

the transpose of A. 

 

                                                 
b More generally, if f is a function with domain A and range B (i.e. f: A�B), then the function g: B�A that satisfies 

f(g(x))= x for all x in B and g(f(y))=y for all y in A is called the inverse of f. This inverse function is unique. To see 

this, suppose that h: B�A is another inverse function. Then for any x in B, h(x) = h(f(g(x)) = (h◦f)(g(x)) = g(x). 

Here ‘◦’ denotes function composition. 
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(d) (13) 

 

If A is an nn × matrix then so is T
A . What might be the relationship between det(A) and 

det( T
A )? 
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



−−= M    ▼ 

 

Corollary: Let σ nS∈ , then 
)()(

1

)1()1(
−

−=− σσ NN
. 

 

Proof: 
)()()()()()(0

111

)1()1()1()1()1()1(1
−−−

−−=−=−=−=−= + σσσσσσι NNNNNN
 

In particular, 
)()( 1

)1()1(1
−

−−= σσ NN
. Upon multiplying the last equation by 

)()1( σN− on 

both sides, we obtain 
)()()(2)(

11

)1()1()1()1(
−−

−=−−=− σσσσ NNNN
   ▼ 

 

Theorem: Let A be an nn × matrix. Then )det()det( TAA = . 

 

Proof: We summarize the argument for convenience. 

∑∑
∈∈

=−=−= −−

nn S
nn

N

S

nn

NT
aaaaA

σ
σσσσσσ

σ

σ
σσ

σ

))(()())1(()1(

)(

)(1)1(

)(
11 ...)1(...)1()det(  

∑∑
∈∈

=−=−= −−

−

−−

nn S
n

N

S
n

N
Aaaaa

σ
σσ

σ

σ
σσ

σ )det(...)1(...)1(
)(1)1(1

)(

)(1)1(1

)(
11

1

11   ▼ 

 

The above theorem has a useful corollary that unlocks further properties of the determinant. 

 

Corollary: Let A be an nn × matrix with column vectors nAA ,,1 L . Then 

)det()det( 1 nAAA L= has the following properties: 

(i) 0)det()det( 1 == nAAA L if A i = A j for any i≠j 

(ii) )det()det()det( 111 nnini ABAAAAABAA LLLLLL λλ +=+  For any column vector B 
n

R∈ and any scalar λ R∈  

(iii) Interchanging any two columns in the determinant results in a change of sign. 

 

Proof: The column vectors nAA ,,1 L of A are the row vectors of TA . Thus, the column 

properties (i)-(iii) of det(A) are the row properties of det( T
A ). For instance, property (i) is true 

because, if A i = A j for some i≠j, 0det)det()det()det(

1

1 =

















===
T

n

T

T

n

A

A

AAAA ML   ▼ 
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Example: 

 

(a) 0

311

311

311

2

321

321

321

==  

 

(b) 0

333

332

331

333

322

311

3333

3322

3311

0

363

352

341

663

552

441

3663

3552

3441

963

852

741

=+=

+

+

+

+=+=

+

+

+

=  

 

We can use the row and the column properties to define the determinant recursively. But first, 

we’ll need another definition. 

 

Definition: Let A be an nn × matrix. Then the ijth minor of A, ijA , is the )1()1( −×− nn matrix 

obtained by deleting the ith row and jth column from A. 

 

Example: Let A be the 44 × matrix 





















16151413

1211109

8765

4321

. Compute 

(a) 11A  

 

(b) 32A  

 

(c) 24A  

 

Solution:  

 

(a) 
















=

161514

121110

876

11A  

 

(b) 
















=

161513

875

431

32A  
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(c) 
















=

151413

11109

321

24A  

 

Lemma: Let A be an nn × matrix with row vectors 11a e 1 , a 2 ,…, a n . Then 

)det()det( 1111 AaA = . 

 

Proof: Recall that 

 

∑
∈

−=
nS

N

nnaaaA
σ

σ
σσσ

)(

)()2(2)1(1 )1(...)det(  

 

However, in this particular case, the first row of A has only one nonzero entry. 

 





















=





















=

nnnn

n

n aaa

aaa

a

a

a

ea

A

L

MM

L

L

M

21

22221

11

2

111 00

detdet)det(
 

 

This means that for any σ nS∈ such that σ(1) ≠ 1, 
)(

)()2(2)1(1 )1(... σ
σσσ

N

nnaaa − = 0 (why?) 

Hence, 

 

∑∑
=∈=∈

−=−=
1)1(;

)(

)()2(211

1)1(;

)(

)()2(2)1(1 )1(...)1(...)det(
σσ

σ
σσ

σσ

σ
σσσ

nn S

N

nn

S

N

nn aaaaaaA . 

 

Note that each term in the sum above has 11a  as a factor. Also observe that for nji ≤≤ ,2 , 

11 −−= jiij aa , where 11 −− jia denotes the 1,1 −− ji  entry in the matrix 11A . Since every 

σ nS∈ satisfying σ(1) =1 permutes the numbers 2, 3,…, n among themselves, each such σ can be 

identified with a unique permutation µ 1−∈ nS  by resetting 2�1, 3�2,…, n�n-1.
c
 With these 

ideas, we may write 

 

)(

)1(1)2(2)1(111

1)1(;

)(

)()2(211 )1(...)1(...)det(
1

µ
µ

µ
µµ

σσ

σ
σσ

N

nn

SS

N

nn aaaaaaaA
nn

−=−= −−
∈=∈

∑∑
−

. 

 

                                                 
c
 For example, if σ 4S∈ transforms the vector (1,2,3,4) into (1,4,3,2), then, by deleting 1 and setting each of the 

remaining numbers one unit back, we get (3,2,1). This 3-tuple vector is the work of permutation µ 3S∈ , which is 

identical to σ in everything but its name. 
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And since the right-hand-side of the last equation is just the entry in the first row and first 

column of A multiplied by the determinant of the minor 11A , the desired result follows. ▼ 

 

The next example illustrates an important step in the theorem that follows. 

 

Example: Let A be the 44 × matrix 





















16151413

01100

8765

4321

. Then =





















16151413

01100

8765

4321

det  

 

=





















−=





















−=





















− +

16141513

8675

4231

00110

det)1(

16151413

8765

4321

01100

det)1(

16151413

8765

01100

4321

det)1( 122  

 





















−=





















−= ++

16141315

86157

4213

00011

det)1(

16141315

86157

4213

00011

det)1( 3322  

 

By the lemma above, the determinant of the last matrix is 

 

















− +

161413

8615

421

det11)1( 33
. 

 

Notice that 
















=

161413

8615

421

33A . Hence,  

 

( )33

3333 det11)1(

161413

8615

421

det11)1(

16151413

01100

8765

4321

det A++ −=
















−=





















 

 

The above example suggests that if row i of an nn × matrix A has a single nonzero entry ija , 

then )det()1()det( ijij

ji AaA +−= . This is demonstrated within the proof of the theorem below. 
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Theorem: Let A be an nn × matrix. Then, for ni ≤≤1 , ∑
=

+−=
n

j

ijij

ji AaA
1

)det()1()det( . 

 

Proof: ∑
=























=























++=























=
n

j

n

jij

n

nini

nnnn

inii

n

a

ea

a

a

eaea

a

aaa

aaa

aaa

A
1

1

11

1

21

21

11211

detdetdet)det(

M

M

M

L

M

L

MM

L

MM

L

  (i) 

 

Where 























=























nnnjn

ij

nj

n

jij

aaa

a

aaa

a

ea

a

LL

MM

LL

MM

LL

M

M

1

11111

00detdet . 

 

By shifting the ith row up 1−i times and the jth column to the left 1−j times, we get that 

 





























−−=























+−

+++−+++

−+−−−−−

+−

−−

nnnjnjnnj

nijijiiji

nijijiiji

njjj

ij

ji

n

jij

aaaaa

aaaaa

aaaaa

aaaaa

a

a

ea

a

LL

MLMMLMM

LL

LL

MLMMLMM

LL

LL

M

M

111

11111111

11111111

11111111

11

1

0000

det)1()1(det   (ii) 

 

Notice that the determinant in the right side of equation (ii) satisfies the hypothesis of the lemma. 

Note also that the matrix that results from deleting the first row and the first column is ijA . 

Hence, (ii) is equivalent to )det()1()det()1( 2

ijij

ji

ijij

ji
AaAa

+−+ −=− . Summing over all j, we get 

the desired result.          ▼ 


