Determinants of n X n Matrices (optional) By Arkady Etkin
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where each of the determinants in the sum above is either 1 or —1.
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Observe that each scalar product in front of the determinants in (1) has the form a,,a,a,, where

(a, B,7) is a rearrangement or permutation of (1,2,3). Indeed, if we replace the unit directional
vectors i, j, k with their generalized names e, e,,e; in (1), then we may notice that every term in

the sum is of the form a,,a,,a,, det| e,

e €, €, €,

a,,a,ay det| e, |+a,,a,,a;,det] e; |+a,,a,,a,;det] e, [+a,a,a, det] e; [+

€; € €; €
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Since the summands in (2) follow a clear pattern, our immediate goal is to represent (2) in a
more compact form. To achieve this goal, note that the rearrangements of (1,2,3) may be viewed
as one-to-one and onto functions on the set {1,2,3}. For example, the permutation (2,3,1) may be
represented by the function 6:{1,2,3}->{1,2,3}, where 6(1)=2, 6(2)=3, and o(3)=1.

e, €oa)
With this notation, a,,a,;a,, det| e, |becomes %15(1)%20(2)%30(3) det| e,

e €5(3)

The permutation 1, known as the identity permutation, is the trivial rearrangement of (1,2,3). In
other words, 1(1)=1, 1(2)=2, and 1(3)=3.

Since every summand is obtained by choosing one and only one term in each row and each
column of the determinant matrix, we see that
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Here, the sum is taken over all permutations of (1,2,3). The set of all such permutations is
denoted by S,.

In order to make equation (3) the definition of the 3 by 3 determinant, it is necessary to eliminate

€5

all reference to determinants on its right side. To do this, recall that each det| e will be 1 or

o(2)

€53)
—1. It will be 1 if the number of pairwise row interchanges is even and it will be —1 if this number
is odd. For any 6 in S;, let N(o) denote the minimal number of transpositions, or pairwise

interchanges of components in the vector (o(1), 6(2), 6(3)) that are necessary to make it into
(1,2,3). For example, if (5(1), 6(2), 6(3)) = (3,2,1), then N(c) = N(3,2,1) = 1+N(1,2,3) = 1+0 = 1.

o
In particular, det| e, ,, |=(=1)' for the permutation o in our example. The reader should take a
€o»
o)
moment to realize that for a generic o, det €or) | = (_1)N(J) .
€o0)

We may now restate the definition of a 3 by 3 determinant in our new language.

Definition: Given a 3 by 3 matrix A with entries (a;), we define det(A) by

N(o)
Z 116 (2)436(3) (-D

o€S;

Note that in the definition above, we are chiefly concerned with the parity of N(o) (i.e. whether
N(o) is even or not). Its exact value is of no interest to us. For instance, I could have brazenly
(and incorrectly) stated that N(3,2,1) = 1 + N(2,3,1) =2 + N(2,1,3) = 3+N(1,2,3) = 3, because
(=1)! = (=1). In fact, if I can find a sequence of transpositions in the vector (5(1), (2), 6(3))

that converts it into (1,2,3), then I immediately know that (—1)"‘”is equal to negative one raised

to the order, or the number of transpositions of this sequence. This is so, because, given any two
such sequences of transpositions of order s and t respectively, we see that the sequence of s



o)
transpositions will convertdet| e,,, | into (=1)", whereas the second sequence converts this

€53

€50
determinant to (—1)’ (why?). But this implies that (—1)" =det| e,,, | =(=1)". Thus, the number

€5(3)

of transpositions needed to rearrange the unit normal vectors inside the determinant to their
proper order is unique up to parity. That is, we can perform this rearrangement in few or in many
steps, but if the number of steps taken by one procedure is odd, then the number of steps in all
other procedures is odd. Conversely, if the number of steps is even, then the number of steps in
all other procedures is also even.

Comprehension check: What is the parity of N(3,1,2)? In other words, is N(3,1,2) even or odd?
€
What is the value of det| ¢, |?

)

1 00 O
. . . . . ) 01 0 O

The idea of volume may be generalized to higher dimensions. The determinant E for
0 0 01

example, may be thought as the volume of a 4-D box with dimensions 1 by 1 by 1 by 1 (What
would you say is its volume?). By essentially following the same patterns of reasoning that lead
to the definition of 2x?2 and 3x 3 determinants, you will conclude that the n-D volume of a

a,

‘parallelepiped’ spanned by vectors a,..., a, € R"is the absolute value ofdet| : |, where

determinant is any function with the following properties®:

1 - 0 e,
1) det| : Dl=det| : |=1
0 ... 1 e,
a
(i1) det| : |=0ifa,=afor any i#j
a

* The fact that we are able to give a definite formula for this function using properties (i)-(iii) shows that this
function is unique.
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Properties (i)-(iii) imply that, just like in the 3x3case, the nx n determinant is the sum of all n-
product scalars (exactly one from each row and each column) multiplied by determinants of the

corresponding permutations of unit directional vectors e,....e,. That
is,
a, ay 4y, ae +--+a,e, €s)
det| : |=det| : ;| =det : = Zaw(l) el det
oes,
an anl ann anlel +eeet annen eo‘(n)

This leads us to the following definition.

N (o)
Definition: Let A be an nxn matrix (a, ), then det(A) = Z Q151 %26(2) Ay (1) ,

oes,

where the sum is taken over all permutations of (1,2,...,n).

For those of you who know a bit of combinatorial analysis, there is a total of n! permutations of
the numbers (1,2,...,n). Thus, there are 6=3! permutations of the vector (1,2,3) and therefore 6
summands in the definition of 3 X 3 determinant.

The above definition is computationally cumbersome, but it has significant theoretical
consequences. Before we can begin to explore a few of these consequences, we’ll need to
develop quite a bit of theory.

n
It is common to represent a permutation ¢ € S, with a 2 by n array . For
ocl) -+ o)

example, the permutation in S, that rearranges (1,2,3,4) into (4,2,1,3) can be denoted by
1 2 3 4
(4 5 1 3}. For any two permutations y, ¢ € S, , the function pn o, defined by p 6(i) = pu(o(1))

is a permutation, because the combined action of p and o is itself a reshuffling of the vector
(1,2,...n):

(1,2,...n) > 0 = (c(1),0(2),...0n)) = 1 — (o), u(c(2)),..u(c(n))) =
=(uo(),uo(2),..uc(n))



Example: If p = (
1 2 3 4
21 3 4

Observe that forc € S,

natural order (1,...,n). In algebraic notation, this means that p 6 = 6 p =1, where 1 is the identity
permutation (i.e. the permutation that does not shuffle (1,...,n).We refer to this p by its special

1234J

1 2 3 4
and o = , then you should verify that p ¢ =
31 4 2 3

4 2 1

there must be a permutation pe S, that brings (o(1),..., o(n)) back to its

_ . . . . b
name o ' because p is the unique inverse function of .

Remark: In the discussion above, we regarded p as the inverse of 6. However it is more correct
to say that o and p are inverses of one another. We are free to say that ¢ is the inverse of p and

refer to 6 by the name of #™'.

1 2 3 4
4 2 1 3
Solution: o' must undo the shuffling of (1,2,3,4) that results from the action of c. That is, o~
applied to (a(1), 6(2), 6(3), 6(4)), will give back the vector (1,2,3,4). Hence (o' (c(1)),
o' (6(2), 67 (6(3)), o' (c(@) =(c7' @), 7' (2), 7' (1), 7' (3)) =(1,2,3,4). It follows

1 2 3 4
32 4 1}

Example: If 6 = ( J, compute &' .

thato"' @) =1, 67" (2)=2, 6 (1)=3, 67" (3)=4. Thus ' = (

1 2 3 4

Comprehension Check: Let & = (3 4 o J, compute &'

Since any permutation of (1,...,n) can be uniquely identified as the inverse of another
permutation, we can restate the definition of the n X n determinant in the following form.

a,

_ i N(o™)
de(A)=det| : |=> (-D""a, . .a . (4)

a oeSs,

n

This form will prove useful in relating the determinant of an n X7 matrix A to the determinant of
the transpose of A.

® More generally, if f is a function with domain A and range B (i.e. f: A>B), then the function g: B> A that satisfies
f(g(x))=x for all x in B and g(f(y))=y for all y in A is called the inverse of f. This inverse function is unique. To see
this, suppose that h: B> A is another inverse function. Then for any x in B, h(x) = h(f(g(x)) = (hef)(g(x)) = g(x).
Here ‘2’ denotes function composition.



a a,
Definition: Given an mXn matrix A = . . , we define the n X m matrix
aml o amn
T T
a, a4y,
AT = : : Ty _ . T.
, called the transpose of A, by (Cl,-j )=(a ji) . Thatis, A" is
T T
anl o anm

obtained from A by making the first column of A the first row of A", the second column of A—

the second row of A" and so on. In other words,
T T

a, Im a4y
AT =| ¢ C =
T T
anl o anm aln anm
1 2 3
1 4 7 10
- 4 5 6
Example: LetA=|2 5 8 11 |then A" = s o
36 9 12
10 11 12

Comprehension Check: Compute the transpose of the following matrices:

1 -3 4
@l2 2 =10
4 0 0
(b) (1-7 4 5)
0
©|
14
6
(d) (13)

If A is an nXnmatrix then sois A" . What might be the relationship between det(A) and
det(A")?



) . - T T
det(A”) = det| F =D DY a, ) )

T T oeS,

T . . .
Because a,,, =a,,, forany 1<i<n, equation (5) can be written as

Ty _ _1\N(@ _ _1\N(o) —
det(A") = 3 (D" a, iy, = 2D Cay o a =

oes, oS,

_ N _\No)
- Z( 1) aala'l(al)"'aana'l(a,,) (6)

oes,

By rearranging the terms of the scalar product d o (ay) . a,07 (a,) 5O that the row indices are in

order, the last equality in (6) becomes

_1\N(o)
Z( 1) A1y Yoy @)

oeSs,

N(o) _ N(o™) . S .
If we can prove that (=D = (-1 , then we will be able to identify formula (7) with

formula (4). This will imply that det(A”) = det(A). The following proposition will establish this
and more.
Proposition: Let 1, 6 € §, be any two permutations. Then (—1)N(M) = (—I)N(ﬂ)w(a)

€501 €uia1)
_1\Nwo) _ : = :
. (-1 =det| : = det : @

e

Proo

uo(n) e,U(O'(”))

Denote €41y by f1 , €5(2) by f2 veues €o(n) bY fn . Then the rightmost expression in (i)
f/t(l) h €sa)
det| : [=(=D"*det| : |=(=D"" det
fﬂ(ﬂ) fn €5n)

becomes



€
— (_1)1\/(#) (_I)N(O') det — (_I)N(ﬂ)(_l)N(O') — (_1)N(ﬂ)+N(O') v

-1
Corollary: Letc € S, then (‘DN(G) = (‘DN(G g

Proof: 1 =(=1)" = (-1)"® = (—1)N(0‘7_l) = (_1)N(0)+N(0") = (=)@ (_I)N(o")

-1
In particular, 1 = DY =Y Upon multiplying the last equation by (D" on

-1 -1
both sides, we obtain (—1)N(G) = (‘DZN(G) (_I)N(G )= (_I)N((r : v
Theorem: Let A be an nxn matrix. Then det(A) = det(A”).

Proof: We summarize the argument for convenience.

Ty _ N(o) _ N(o) —
det(A") = Y (-D" a4ty = D (D"

oo (o)
oeSs, oeSs,

— N(o) — N@™) —
=2 D" ay = DY a L a = det(A) v

oes, oes,
The above theorem has a useful corollary that unlocks further properties of the determinant.

Corollary: Let A be an n X nmatrix with column vectors A,,---, A, . Then

det(A) =det(A, --- A,) has the following properties:

(1) det(A) =det(A,---A,)=0if A = A, for any i#

(ii) det(A,---A, + AB---A,) =det(A,--- A, ---A,) + Adet(A, ---B--- A,) For any column vector B

€ R"and any scalar 4 € R
(111) Interchanging any two columns in the determinant results in a change of sign.

Proof: The column vectors A,,---, A, of A are the row vectors of A" . Thus, the column

properties (i)-(ii1) of det(A) are the row properties of det( A"). For instance, property (i) is true
Al

because, if A, = A | for some i#j, det(4,---A,) =det(A) = det(A")=det| : |=0 v
A T

n



Example:
1 2 113
@l 2 3=21 1 3=0
1 2 113
1 4 443 (1 4 4 |1 4 3 I 1+3 3 |1 1 3 (1 3 3
(b)[2 =2 5 543=2 5 5(+2 5 3=0+]2 2+3 3=12 2 3+2 3 3=0
3 6 643 3 6 6/ 3 6 3 3 343 3 3 3 3 |3 3 3

We can use the row and the column properties to define the determinant recursively. But first,
we’ll need another definition.

Definition: Let A be an nXnmatrix. Then the ijth minor of A, A_U , 18 the (n —1) X (n —1) matrix
obtained by deleting the ith row and jth column from A.

1 2 3 4
. 6 7 8
Example: Let A be the 4 x4 matrix . Compute
9 10 11 12
13 14 15 16
@ A,
(b) Ay,
(©) Ay
Solution:
6 7 8
(@ A, =10 11 12
14 15 16
1 3 4
(b) A, =|5 7 8
13 15 16
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1 2 3
©) Ay, =9 10 11
13 14 15
Lemma: Let A be an nXnmatrix with row vectors a,,e,,a,,...,a,. Then

det(A) = a,, det(4,,) .

Proof: Recall that

_ N(o)
det(A) - Zalo-(l)a20'(2)"‘an0'(n)(_1) ’

oes,

However, in this particular case, the first row of A has only one nonzero entry.

a e, a, 0 -0

a, a, Ay a,
det(A)=det| . |=det| : "
an anl an2 e ann

This means that for any ce S, such that o(1) # 1, @,51,825(2)++ Qo) (—1)N(G) =0 (why?)

Hence,

_ N(o) _ N(o)
det(A) = ZClw(l)dw(g)-.-ang(")(_1) = ZallaZO'(Z)"'anO'(n)(_l) :

oeS,;o(1)=1 oeS,;o(1)=1

Note that each term in the sum above has a,, as a factor. Also observe that for2<i, j<n,

a; =a,,;,,where a,_, , denotes thei—1, j—1 entry in the matrix A_ll Since every

oce §, satisfying 6(1) =1 permutes the numbers 2, 3,..., n among themselves, each such ¢ can be
identified with a unique permutation pe S, | by resetting 2->1, 3->2,..., n>n-1.° With these

ideas, we may write

— N(o) _ N(u)
det(A) = Z A0y )y (1) =day Z Dy 2u2) - Anun-) =D .
oeS,;o()=1 HES,

¢ For example, if c€ S , transforms the vector (1,2,3,4) into (1,4,3,2), then, by deleting 1 and setting each of the

remaining numbers one unit back, we get (3,2,1). This 3-tuple vector is the work of permutation pu € S5, which is

identical to ¢ in everything but its name.

10
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And since the right-hand-side of the last equation is just the entry in the first row and first
column of A multiplied by the determinant of the minor A4,, , the desired result follows. ¥

The next example illustrates an important step in the theorem that follows.

1 2 3 4 1 2 3 4
|5 6 7 8 5 6 7 8
Example: Let A be the 4 x4 matrix . Then det =
0 0 11 O 0 0 11 O
13 14 15 16 13 14 15 16
1 2 3 4 0O 0 11 O 0 11 0 O
0O 0 11 O 5 1 2 3 4 - 1 3 2 4
(—1)det =(=1)" det =(—=1)"" det =
5 6 7 8 5 6 7 8 5 7 6 8
13 14 15 16 13 14 15 16 13 15 14 16
11 0 0 O 11 0 0 O
3 1 2 4 31 2 4
= (=1)*" det = (=1)*" det
7 15 6 8 7 15 6 8
15 13 14 16 15 13 14 16

By the lemma above, the determinant of the last matrix is

1 2 4
(-D*711det|15 6 8
13 14 16
1 2 4
Notice that A_33: 15 6 & |.Hence,
13 14 16
1 2 3 4
5 6 7 8 b2 4
det =(=1)*311det| 15 6 8 |=(=1)*"11det(A..
0 0 11 0 D D (33)
13 14 16
13 14 15 16

The above example suggests that if row i of an nXnmatrix A has a single nonzero entry a,,

then det(A) = (-1)"*/ a; det(A_l.j) . This is demonstrated within the proof of the theorem below.

11
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Theorem: Let A be an nXnmatrix. Then, forl <i<n, det(A) = (-)"/q, det(A_,.j) .

Jj=1
a;;, 4ap o 4y, a, a
n
Proof: det(A) =det| a;, a,, -+ a, |=detja,e +---+a,e, |= Zdet ae; 1

. . . j=1 .

anl anZ ann an an
a, a a; a,
Where det| a e, |=def|f 0 -+ a; -+ O
an anl oo anj oo ann

a.. 0 0 0 0

L N S Aijy 0 4y,

det| a,e. |= (D" (=1)"" det| a,

i€ ity Gt Gy Gy a;_1n (i1)
: Aiyj Qi Aipijor Aigjn Aisin
a, :
anj anl anj—l anj+l e ann

Notice that the determinant in the right side of equation (ii) satisfies the hypothesis of the lemma.
Note also that the matrix that results from deleting the first row and the first column is A; .

Hence, (ii) is equivalent to (=1)"/a, det(A_ij) =(-D"a, det(A_,.j) . Summing over all j, we get
the desired result. v

12



